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ABSTRACT 

For sequences of symplectic twist maps without conjugate points, an in- 

variant Lagrangian subbundle is constructed. This allows one to deduce 

that absence of conjugate points is a rare property in some classes of 

maps. 

1. In troduct ion  and results  

In this paper we construct an analogue of L. Green's invariant subbundles for 

the case of discrete variational principles related to the dynamics of sequence of 

symplectic twist maps of T*• d. Such a construction was first performed by L. 

Green [9] for Riemannian geodesic flows but has turned out to be much more 

general. For example, it can be extended to optical Hamiltonian flows [6]. The 

construction of invariant subbundles is very useful in many examples of the 

so-called Hopf-type rigidity. 

In particular, we apply L. Green's construction to the so-called Frenkel- 

Kontorova variational problem which is related to a sequence of generalized 
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standard maps. We prove a result which can be seen as an analogue of a 

rigidity result of Knauf and Croke-Fathi which was proved for conformally flat 

Riemannian metrics [11, 7]. 

In the discrete time case Hopf rigidity was established first for convex plane 

billiards [1, 17]. 

There are still very many problems related to the rigidity and integrability of 

twist maps and we hope that  our results will be useful for their solutions. 

Let us introduce the setting (see also the recent book by Chris Gol~ [8] for a 

detailed exposition). 

For each n • Z, let Sn: ~d X ~d ...+ ~ be a C2-smooth function satisfying the 

following: 

1. 

Snis Zd-periodic: Sn(q + e, Q + e) = Sn(q, Q) 
(1.1) 

for any (q,Q) • ~d x ]I{dand e • Z d. 

2. Sn satisfies the uniform twist condition: for any ( • ]I{ d the quadratic form 

02S~(q, Q) . . 
(1.2) Z ~ -  ~¢J < -K]1¢112 for a positive constant K. 

i,j Oqi Q, j - 

Such a function defines two closely related objects. 

The first is the variational functional defined on the sequences {qn}, n • Z, 

(1.3) F({qn})--  ~ Sn(qn,qn+l). 
T b ~ - - 0 0  

The functional is a formal sum but the extremals are well defined and satisfy 

the equations 

(1.4) 02Sn-l(qn-l,qn) + O~Sn(qn, qn+l) = 0 for all n e Z. 

The second object is the symplectic diffeomorphism T~ of T*'~ d generated by 

the function Sn. In the standard coordinates (p, q) it is given by the following 

implicit formula: 

(1.5) Tn(p,q) -- (P,Q) i f P  = +02Sn(q,Q), p=-O1Sn(q,Q).  

Here and throughout the paper 01,02 stand for the derivatives with respect to 

the qi, Qj variables, respectively. 
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We refer the reader to [8], [10] and [13] for general theory of symplectic twist 

maps - -  note that  in equation (1.2) we follow [13]'s choice of twist condition 

rather than either of those of [10]. 

The basic example for us will be 

Example 1: Let S~ = llIQ - qll 2 + Vn(q) where Vn is a Zd-periodic smooth 

function (called the potential). In this case we shall call F a Frenkel-Kontorova 

functional. In what follows we will assume that  the sequence of the potential 

functions Vn depends either periodically on n, or Vn vanishes for all but finitely 

many values of n. The corresponding map T~ is a generalized standard map of 
T*q2d: 

T~: (p, q) ~-~ (p + VVn(q),p + q + VVn(q)). 

It is important to notice that  in this case for any 

acting on ~2d and not just on T*Td; this follows 

e E ~ d  

T~(p+e,q)  = (P + e , Q  + 

n, Tn can be considered as 

from the fact that  for any 

e). 

The correspondence between the extremals of the functional F and the orbits 

of the sequence Tn is the following. Let a sequence {qn} be an extremal for F.  

Let Pn = -01S(qn,qn+l) and form the sequence {Xn = (Pn,qn)}. Then {xn} 
is an orbit of the evolution, i.e. Tn(xn) = Xn+l. Conversely, if {Xn = (Pn,qn)} 
is an orbit then the corresponding sequence {qn} is extremal for the variational 

principle written above. 

Similarly, invariant fields along the orbits of {Tn} correspond to the so-called 

Jacobi fields along the extremals. For an orbit {Xn}, let ~n E T ~ T * T  d be 

a tangent vector at xn = (Pn,qn); then the field {¢n} is invariant under the 

derivative T,, i.e. (Tn) ,(~)  = ~n+i, if and only if the vectors ~n = 7r,(~n) 

satisfy the Jacobi equation (here 7r: (p, q) ~ q is the canonical projection): 

(1.6) bT-l~n-1 + anon "t- bn~n+l = 0 

with the matrices 

bn = 012Sn(qn,qn+l), an -= 011Sn(qn,qn+l) +022Sn--l(qn--l,qn) 

(the symbols 011 S, 012S, 022S denote the matrices of second derivatives of S). 

We will use the following definition first introduced for the discrete case in 

[1]. 
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Definition: Two points of the extremal configuration {qn} are called conju-  

ga t e  if there exists a non-trivial Jacobi field ~n vanishing at these two points. 

Denote by R~ the evolution transformation, i.e. 

R n = T n _ l O . . . O T m ,  f o r n > m ,  Rmm=Id and R~n=(Rm)  -1, f o r n < m .  

With the above correspondence one can interpret the definition geometrically 

by saying that  qm and qn, for m < n, are conjugate if 

(Rnm-1),('l~(Xm)) ["l )~(Xn) ~ {0}, 

where /;(x) denotes the vertical subspace at x and x~ = R~(xo) is the orbit 

corresponding to {qn}. 

THEOREM 1 : f f  none of the extremals of the functional F have conjugate points, 

then for every n there exists a field W,~ of Lagrangian subspaces W~(x) C_ 

TxT*T d depending measurably on x and such that: 

1. Invariance: (Tn),Wn(X) = Wn+t (Tnx). 

2. At every point x, Wn(X) is transversal to the vertical subspace V(x). 

We shall use a partial order < on the subset of Lagrangian subspaces which 

are transversal to the vertical one, defined as follows. To every such subspace 

l:(x) corresponds a symmetric matrix L, by/ : (x)  = {~ : dp(~) -- Ldq(~)}. Given 

two subspaces 1:1,~ we say ~1 <:/:2 if L1 _< L2, i.e. L2 - L1 is non-negative. 

THEOREM 2: If  none of the extremals of the functional F has conjugate points, 

then for the fields Wn(X) the following holds: 

1. (Tn~l),V(Tnx) < Wn(X) <<_ (Tn-1) , (V(Tnlx)) ,  or in terms ofthematrices 

this reads -OllS~(q,q+) <_ Wn(x) <_ 022Sn-l(q_,q), for all x where q = 

7r(x), q_ -- 7r(T~-_llx), q+ = 7r(Tnx). 

2. The following inequality holds true for all x: Wn+l(Tnx) - W~(x) <_ 

011Sn(q,q+) + 022Sn(q,q+) + 012Sn(q,q+) + 021Su(q,q+) with equality 

only in the case when 012Sn(q,q+) = 021S~(q,q+) and Wn+l(Tnx) = 

022Sn(q, q+ ) + 021Sn(q, q+ ) and Wn(x) = -0lISa(q,  q+ ) - 012Sn(q, q+ ). 

As an application of this to Frenkel-Kontorova functionals we obtain 

THEOREM 3: Consider the F~enkeI-Kontorova functional with a sequence of 

potential functions Vn which is either periodic in n or has all but finitely many 
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of the Vn's constant functions• Then either there exist extremals with conjugate 

points or all the potential functions are constants. 

The next section contains necessary preliminaries about Jacobi fields in the 

discrete case• We prove the theorems in section 3. Discussion and open questions 

conclude the paper• 

ACKNOWLEDGEMENT: This paper was started while the first author was 

visiting the second author at the Nonlinear Centre, University of Cambridge 

in 98/99 in the framework of a joint project EPSRC grant• We are grateful 

to the EPSRC for their support and to the University of Cambridge for their 

hospitality. 

2. Nonsingular Jacobi fields 

In this section we prove first that the assumption that no extremal has conjugate 

points implies that each extremal is in fact a strict local minimum configuration. 

As a consequence of this we construct a special non-singular solution of the 

matrix Jacobi equation. The first fact is stated as 

LEMMA 1: If all the extremals of F have no conjugate points, then each is a 

strict local minimum between any two of its points. 

Proof of Lemma 1: Let {qn},n E Z, be an extremal. For M < N, denote 

N - 1  

FMN(UM,...,UN) ---- SM--I(qM--I,UM) + E Sn(Un,Un+l) 4- ~N(UN,qN+I). 
n=M 

We claim that the matrix 52FM,N of second variation of FMN is positive definite. 

To prove this, note that by a simple calculation it has the following block matrix 

form: 

(2.1) 
b aM+l "'. 

• "  • " " • D N - 1  

bT_l aN 

with the matrices ai, bi introduced in equation (1.6). It follows that the kernel 

of this matrix consists exactly of the Jacobi fields vanishing at qM-1 and qN+l. 

Thus by the non-conjugacy assumption, the matrix is non-degenerate. But 

then it has to be positive definite by the fact that it depends continuously 
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on the configuration (and so its signature is constant) and there always exist 

segments which minimize the functional (a consequence of (1.1),(1.2)) and so 

have positive definite second variation (see, for example, [8] for the proof). This 

completes the proof of the lemma. | 

Note that  as a consequence, every orbit is a global minimum between any two 

of its points, though we do not need this fact. 

Let us consider a minimal configuration {qn},n E Z. For given k E Z, define 

a matrix solution of the Jacobi equation (1.6) ~(k) such that ~k) = 0 and ~(k) ~k+l  

is invertible, by iteration from this pair. Then by the no conjugate points 

assumption, all ~(n k) are invertible (n ¢ k) and hence 

(2.2) A(n k) - b  f(k) r~(k)l_l (n > k) n'~n-,I-I L',~n J 

are defined and do not depend on the choice of ~(k) Moreover, one can easily ~k+l"  

see that  

(2.3) ,~(k) and for n > k, " * n + l  ---- an+l v n t " n  J v n .  " ' k + l  ---- a k + l  , A ( k )  - -  h T f A ( k ) ] - l h  

In particular, all the A~ ) are symmetric. A crucial observation for us is that  all 

these matrices are in fact positive definite. Indeed, if on the contrary, for some 
m > k, A(m k) is not positive definite, then for some vector ~ ~ 0, (A(mk)~,~) < 0. 

Then define the segment of the Jacobi field 

~n = Z(k)rz(k)l-l" k < n < m; 
~ n  L"~m l '1 ,  

for n = k and n = m we have ~k = 0, ~m = 7. One can easily compute the value 

of the quadratic form 52Fk+l,m on the variation (~k+l , . . . ,  ~m). Using equation 

(2.1) one has 

52Fk+l,m(~k+l,... ,qm) = (-bm~m+l,~m) = (A~)r/,~/), 

which contradicts the positivity of (~2F. 

We claim that  the limit 

(2.4) lim A~ ) = An 
k--+-oc 

exists and An is a positive definite matrix sequence with the recursion rule 

(2.5) An+l = an+l - bT A~l  bn. 
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~(k-1) 
Indeed, it is easy to see by induction that A~ ) is monotone in k: A~  ) > ,-n , 

for all n > k. The initial step A (k) 4(k-D k+l > "k+l  follows from 

A(k) and ~(k-1) ~TrA(k-1)l-l~ 
k + l  = a k + l  " 'kd-1 = a k +  1 --  % [ ~ k  ] Uk, 

A(k) _ d ~ l  1) /-Tr~(k-1)]-ls- 
SO . ~k+l : ~k [¢'lk J tJk' 

The induction step is also simple: if 

A~ ) > A~ -1), 

then 
A(k) _ ~(k-1) _hT([A(k)]-I _ [A~- l ) ] - l )b~.  

n + l  " ' n + l  = v n \ t - - n  J 

Thus the limit (2.4) exists and is a non-negative definite matrix. Moreover, 

An is positive definite since it is necessarily non-degenerate (together with A (k) n , 

the limit An has to satisfy the recurrence relation (2.5), which can be written 

without the inverses of An). The claim is justified. We summarize the result in 

the following 

THEOREM 4: For any strict local minimal configuration {qn} there exists a 

non-singular solution ~ of the matrix Jacobi equation such that the matrices 

An = -bn~n+l~  1 are symmetric positive definite and satisfy 

(2.6) An+I = an+l - bTnA~lb,~. 

3. P r o o f s  o f  t h e  m a i n  t h e o r e m s  

In this section we use the construction of the previous section to prove Theorems 

1 and 2, and then apply them to prove Theorem 3. 

Proof of Theorem 1: Consider the evolution transformations R n defined above 

and the orbit of the point x, Xn = REx, and consider the corresponding extremal 

qn : ?rXn. 
Define Wn(X) = limk-~-o~ W(n k) (x), where 

= 

Note that  by the assumption of no conjugate points the Lagrangian subspaces 

W (k) (x) are transversal to the vertical subspaces V(x). Moreover, one can easily 

check that the corresponding matrices W (k) satisfy 

(3 .1)  W (k) (x )  = - 0 1 1 S n ( T r ( x ) ,  7 T ( T n ( X ) )  + A ( k ) .  
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Therefore, by the properties of A (k) of the previous section, the matrices Wn 
are well defined and satisfy the equation 

(3.2) l im  W(nk)(x) = Wn(x)  = -011Sn(Tr(X),Tr(Tn(x)) + An. 
k-+-~ 

Notice that Wn(X) depends measurably on x, since for every n, k, W(nk)(x) is a 

smooth field of Lagrangian subspaces. The invariance property of the fields Wn 

follows immediately from the transformation rule 

W(~I (x )=  (T~),W(~k)(Tjlx) 

for W (k) which is immediate from the definition. This yields the proof of 

Theorem 1. | 

Proof of Theorem 2: As in the proof of Theorem 1, consider the orbit of the 

point x. In order to prove the inequalities 1 and 2 of Theorem 2, we shall use 

strongly that all the matrices An are positive definite. Then (3.1), (3.2) imply 

(3.3) 

and therefore 

--C~llSn(71"(X), ff(Tn(x)) ~ Wn(x); 

-Ol lSn(q ,  q+) <_ Wn(x). 

Also, using the relation (2.5), we have 

W,~+I (T~x) = -011 Sad-1 (Tr(Tnx), 7((Tn+1 o Tax)) + A~+I 

(3.4) ~- -011Sn+l(TC(Tnx), ~-(Tn+ 1 o Tax)) + an+l - bT Anlbn 

= 022Sn(~X, 7((Tnx)) - bTnA~lb, <_ 022Sn(Trx, 7r(T~x)). 

Thus we have 

(3.5) W~(x) <_ 0228n_l(~(Tj~lx),r(x)) = 0228n-1(q_,q). 

Notice that the inequalities (3.3) and (3.5) can be expressed geometrically by 

(Tn.~l),V(Tnx) ~_ Wn(X) ~_ (Tn-1),(V(T((lx)). 

This proves the first part of Theorem 2. 

In order to prove the second part we subtract the two expressions (3.4) and 

(3.2) for W. We have 

Wn+l (Tnx) - Wn(x) :022Sn(71"x, 7((Tax)) d- 011Sn(71"X, u(T~x)) 

(3.6) - An - bnT An-l bn. 
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This can be rewritten as 

(3.7) 
Wu+l (Tux) - Wn(x) =OuSt (q ,  q+ ) + 022S.~(q, q+ ) 

T -1/2 1/'2 - (Aln/2 + bnA n )(A n + A;1/2bn) + bn + b T. 

Notice that  the first matrix in brackets of (3.7) is the transpose of the second 

one and thus 

Wn+l(TnX) - Wn(x) ~_OUSn(q,q+) + 022Sn(q,q+) + bn + b T 

(3.8) =OUSn(q, q+ ) + 022Sn(q, q+ ) 

+ Ol2~n(q, q+) + 021Sn(q, q+). 

Moreover, the inequality (3.8) is strict except when 

(3.9) An = -bn = - b  T. 

In the last case the expressions for Wn+l(TnX) and Wn(x) are 

Wn+l (T~x) = 022S~(q, q+ ) + 012S~(q, q+ ), 
(3.10) 

W~(x) = -011S~(q, q+ ) - 021S(q, q+ ). 

This finishes the proof of Theorem 2. | 

Proof of Theorem 3: In the case of a Frenkel-Kontorova functional we have 

Sn(q,O) = ~(O - q)2 + Vn(q), 

where V~ is periodic in q. In this case the partial derivatives of Sn are 

(3.11) 
011Sn = I + Hess(Vn). 

Suppose that  all the extremals of the Frenkel-Kontorova functional are without 

conjugate points. Then construct the fields of Lagrangian subspaces Wn and 

the corresponding matrix functions W~ as in Theorems 1 and 2. Let us define 

Wn(X ) -~ t rWn(x  ). 

Then w,~ is a bounded measurable function satisfying the following inequality 

(a consequence of Theorem 2): 

wn+a (Tnx) - Wn(X) ~ tr(OnSn(q, q+ ) + 022Sn(q, q+ ) + 2012Sn(q, q+ ) ). 
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In other words we get the following: 

(3.12) w~+l (Tnx) - w~(x )  <_ AV,~(q). 

We shall see below that  if all the extremals of the Frenkel-Kontorova func- 

tional have no conjugate points, then for almost all x there is equality in (3.12). 

Therefore, by Theorem 2, (3.10) holds, i.e. by the formulae (3.11) 

Wn = - Hess Vn and Wn+ 1 (Tnx) -- O. 

In other words, 

Wn - - Hess(V~) - 0 

for all n. But then all the functions Vn are constant. This will finish the proof 

of Theorem 3. | 

In order to establish equality in (3.12) we shall consider two cases. In the 

first case the sequence Vn is periodic, i.e. Vn+p -- Vn for some positive integer 

p and for all n. In the second case the sequence Vn is of compact support,  i.e. 

Vn =- const  for Inl > N for some N. Consider first the periodic case. In this 

case, obviously Wn+p = W~ and thus w~ - Wn+p. Now we apply (3.12) p times 

to obtain 

Wn+p(Tn+p_ 1 o . . .  o TnX) - Wn(X) 

(3.13) AV~0rx ) + AV~+l (~ (Tnx ) )  + . "  + AV~+p_l(~r(T~+p_2 o . . . o  Tnx)) .  

Let us recall the additional property of the standard maps Tn that  the phase 

space is effectively compact (see the remark in Example 1). This implies im- 

mediately that  each field Wn(X) -- Wn(p ,  q) depends periodically on p as well 

as on q. Thus the function wn is a periodic bounded function on H 2g. Now we 

can finish the argument by the following reasoning. If there is strict inequality 

in (3.12) for some n on a set of positive measure, then one has strict inequality 

in (3.13) also on a set of positive measure. However, then the strict inequality 

remains after the integration of (3.13) over the whole phase space H 2d. But 

this is a contradiction, because since all the transformations T,~ are symplectic 

(and hence measure preserving), then one can easily see that  the integrals of 

both sides of (3.13) over H 2g vanish. This finishes the proof of the claim in the 

periodic case. 

In the second case the idea is similar. The important  ingredient in its real- 

ization is the following claim. The limit 

lim wn(x )  = 0 
n--~+oo 
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exists and the convergence is uniform in x. In fact for those n which lie to the 

left of the support of V~, it easily follows from the construction that  Wn(x) = 0 

and then wn(x) = 0 for all x. For large positive n we have Vn = 0, thus the 

recursion rule for the matrices Wn, An from (2.6) and (3.2) is 

(3.14) A~+I = 2 1 -  An 1 and W~ = - I  + An. 

Then for the eigenvalues of An the same recursion rule holds: 

A~+I = 2 - 1/A~. 

Recall that  all the matrices An are positive definite. Therefore, all An are 

positive and then one can easily see that  the sequence An is monotonically 

decreasing and converges to 1. Moreover, it is clear from the formula that  An+I 

is less than 2. Therefore, An converges (uniformly for all orbits) to I and thus 

Wn to 0. This proves the claim. In order to finish the proof of the Theorem 

one proceeds exactly as in the previous case. One takes N sufficiently large 

and sums up the inequality (3.12) from - N  to N. This completes the proof of 

Theorem 4. | 

4. D i s c u s s i o n  a n d  s o m e  o p e n  q u e s t i o n s  

1. The variational principle (1.3) can be considered on other configuration 

manifolds different from tori, for example on hyperbolic manifolds. It 

would be interesting to understand the consequences of the no conjugate 

points condition for these cases. Another very interesting direction would 

be to study, along the lines of this paper, variational principles of the form 

(1.3) on configurations {q~} for n lying on some lattice Z k (see also [12]). 

Some results in this direction were obtained in [3] for multi-continuous- 

time systems. 

2. An important problem is to understand to what extent the smoothness 

of W is required. An example of not smooth enough W would give a 

qualitatively new system without conjugate points. 

3. The integration trick used in the proof of Theorem 3 worked well due to 

compactness of the phase space for the standard map. In many interest- 

ing cases, however, the phase space is not compact. Then new integral- 

geometric approaches are required. For example, it is not clear yet how 

to apply this to the so-called outer billiard problem [16]. It would be 

reasonable to conjecture that  the only outer billiards without conjugate 
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. 

. 

points on the affine plane are the elliptic ones. In some cases the lack of 

compactness can be overcome [5, 2]. 

It was proved by J. Moser [14] for area-preserving twist maps that  ev- 

ery such map can be seen as the time-one map of an optical Hamiltonian 

function. This result was generalized in [4] to higher dimensions for those 

twist maps with symmetric matrix 012S (see [8] for the proof and discus- 

sion). It is not clear what can be said about the interpolation problem for 

symplectic twist maps without conjugate points. Is it true that  they can 

be interpolated by flows without conjugate points? 

One might prefer an extended notion of conjugate points for symplec- 

tic twist maps which mimics more closely the properties of maps arising 

from optical Hamiltonian flows, by allowing a conjugate point to occur 

in between two integer times. To formalise this, we say that  an orbit 

of Lagrange planes crosses the vertical between times n and n + 1 if the 

signature of the associated quadratic form changes. Then for m < n we 

can say time m is conjugate to (n, n + 1) along orbit (xi) if the orbit of 

the plane which is vertical at time m crosses the vertical between times 

n and n + 1. Similarly for m > n + 1 by using the backwards dynamics. 

Also, we can say ( m , m  + 1) is conjugate to (n ,n  + 1) if the orbit of the 

vertical plane at time m crosses the vertical between times m, m + 1 and 

between times n, n ÷ 1. The definition of this paper is incorporated by 

saying times m and n are conjugate if the orbit of the vertical at time 

m has non-zero intersection with the vertical at time n. Of course, if all 

orbits have no conjugate points in this extended sense then they have no 

conjugate points in the restricted sense and hence the conclusions of the 

paper still follow. Advantages of the extended definition are that  posses- 

sion of conjugate points becomes stable and that  for discretisations of an 

orbit of an optical Hamiltonian system its conjugate points are inherited. 
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